
MATH 558 EXAM II

Name:

Statements and Definitions.

1. Define integral domain.

Solution. An integral domain is a commutative ring in which ab = 0, and a 6= 0 implies b = 0.

(i) Give an example of an integral domain that is not Z and not a field.

Solution. The Gaussian integers or a polynomial ring with coefficients in a field are examples of integral
domains.

(ii) What conclusion can you draw from the equation ab = ac in the integral domain R assuming a 6= 0.

Solution. b = c.

(iii) Are the Gaussian integers an integral domain? You must justify your answer.

Solution. The Gaussian integers are an integral domain, because they are contained in a field, namely, the
field C.
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2. Let R be an integral domain. Define what it means for R to be a Euclidean domain.

Solution. An integral domain R is a Euclidean domain if there exists a function v : R\0 → {0} ∪ N such
that:

(i) v(a) ≤ v(ab), for all non-zero a, b ∈ R.
(ii) Given a, b ∈ R, with b 6= 0, there exist q, r ∈ R such that a = bq + r, with r = 0 or v(r) < v(b).

3. Define greatest common divisor for two elements a, b in a Euclidean domain and state one property you
know about the greatest common divisor of a and b.

Solution. In the Euclidean domain R, d is a greatest common divisor of a and b if d divides both a and b
and if d′ divides a and b then v(d) ≥ v(d′).

Some properties of GCDs: Let d be a GCD of a and b.

(i) If d′ is a common divisor of a and b, then d′ divides d.
(ii) There exist r, s ∈ R such that d = ra+ sb.
(iii) v(d) is the least element in the set {v(ra+ sb) | r, s ∈ R and ra+ sb 6= 0}.
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4. State the theorem regarding unique factorization in a Euclidean domain.

Solution. Let R be a Euclidean domain and a ∈ R be a non-zero, non-unit element. Suppose a = p1 · · · pr
and a = q1 · · · qs, where each pi, qj is an irreducible element Then r = s, and after (possibly) re-ordering the
qj , q1 = u1p1, . . . , qr = urpr, for units u1, . . . , ur ∈ R.

5. Let F ⊆ K be fields. Suppose α ∈ K is a root of f(x), where f(x) ∈ F [x] is an irreducible polynomial of
degree d. (i) Define F (a) and describe the natural representation of the elements in F (α).

Solution. F (α) is the smallest subfield of K containing F and α. F (α) consists of all elements of K that
can be written in the form a0 + a1α+ · · ·+ ad−1α

d−1, with a0, . . . , ad−1 ∈ F .

(ii) Define what it means for a(x), b(x) ∈ F [x] to be congruent modulo f(x).

Solution. a(x) is congruent to b(x) mod f(x) if and only if f(x) divides a(x)− b(x).

(iii) Describe the equivalence classes resulting from (ii).

Solution. There is one equivalence for each possible remainder upon division by f(x). In other words, the

distinct equivalence classes are all expressions of the form a0 + a1x+ · · ·+ ad−1xd−1, with a0, . . . , ad−1 ∈ F .

(iv) In the ring F [x] mod f(x), explain how to multiply two classes from (iii) to get a class of the form you
described in (iii).

Solution. a(x) · b(x) = r(x), where r(x) the remainder obtained upon dividing a(x)b(x) by f(x).
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Short Answer. 1. Find all of the roots of the polynomial p(x) = x3 − x2 − 4.

Solution. By the Rational Root test, the possible rational roots of p(x) are: ±1,±2,±4. Direct calculation
shows that p(2) = 0, so 2 is one of the roots of p(x). The division algorithm yields: p(x) = (x−2)(x2+x+2).

The quadratic formula yields the other two roots: −1±
√
7i

2 .

2. Let a = 1 + 2i and b = 4 + 6i be Gaussian integers. Find Gaussian integers q, r such that b = aq+ r, with
r = 0 or N(r) < N(a).

Solution. 4 + 6i = 4 · (1 + 2i) +−2i. Note: N(1 + 2i) = 5 > N(−2i) = 4, so that r = −2i is the remainder
when one divides 4 + 6i by 1 + 2i.
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Proof Presentation. Let F ⊆ K be fields and f(x) ∈ F [x] be an irreducible polynomial of degree d. Let
a ∈ F (α) be a non-zero element. Prove that a has a multiplicative inverse of the form c0+c1α+· · ·+cd−1αd−1.

Solution. Write a = a0 + a1α + · · · + ad−1α
d−1, and set a(x) = a0 + a1x + · · · + ad−1x

d−1. Since f(x)
is irreducible and the degree of a(x) is less than d, the GCD of a(x) and f(x) is 1. Thus, there exist
r0(x), s(x) ∈ F [x] such that

1 = r0(x)a(x) + s(x)f(x). (∗)
If r0(x) has degree less than d, we substitute x = α to obtain 1 = r0(α)a(α) + 0 = r0(α) · a. Since r0(x) has
degree less than d, r0(α) ∈ F (α), and r0(α) is the multiplicative inverse of a.

If r0(x) has degree greater than or equal to d, then we write r0(x) = q(x)f(x) + r(x), with degree r(x) < d.
Substituting into (*) we obtain,

1 = (q(x)f(x) + r(x))a(x) + s(x)f(x) = r(x)a(x) + (q(x)a(x))f(x).

Substituting x = α into this last equation, shows that r(α) is the multiplicative inverse of a.
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